1+1+1+..+1=a+b+c

O+1+0+0+1+...= a0’ +bo+c=ad+bo+c

O+1+D+D+1+...=a® +bd+c=an+bd+c
The exponents in P have the form (2n+1)” for n from 0 to
2022, resulting in 2023 terms. The exponent is a multiple of
3 precisely if 7 =1mod 3, so the second and third equations

have 674 terms of 1 and 1349 terms that are not 1. We rewrite
our equations as

2023=a+b+c (1)
674+13490 = a®+bw+c 2)
674+1349® = aw+bw+ ¢ 3)

Adding equations 2 and 3 results in —1=—a—b+2¢. Adding
this to equation 1 yields 2022 =3¢, or ¢ =674. Subtracting
equation 3 from equation 2 yields 13491\/? =—ai\3 +b1'\/§ s
or 1349 =—a+b. This can be solved with equation 1 as a
two-variable system to obtain a =0 and b=1349. So, the
requested remainder is 1349x + 674.

Also solved by Troy Williamson, Texas State Technical
College, Abilene, TX.

It All Adds Up!

K-2 Proposed by Michael W. Ecker, inspired by QK-1 in
that same issue. An additive sequence <a, > has the
property that a, =a, +a,,Vn=3, with given initial

a,=a and a, =b.

a) Find a formula for Zai in terms only of a, b, and other
i=1
known elements.

b) Show that this sum equals a,, , —1 (as with the Fibonacci
sequence) if and only if b =1.
¢) Show that this sum equals a_ , (as with multiples of the

then

n+2

Fibonacci sequence) if and only if »=0. What is a

n+2

in this case?

Solution by Henry Ricardo, Westchester Area Math

Circle, Purchase, NY. By the defining relation,
Zai = a+b+2ai = a+b+Z:(a[+2 —a,,)
i=1 i=3 i=3
=a+b+(a,,—a)=a+b+a,,—(a+2b)=a,, , —b,

and this formula immediately implies the initial statements of
parts b) and c). If b = 0, then a,, = F,-a, where F,
denotes the nth Fibonacci number. (Problems Editor’s Note:
This is a result easily proved by induction — or as a
consequence of the more general relation a, = F, ,a+F, b

n—l1

n+2

that has previously appeared more than once in this journal,
including in this column.)

Also solved by Raymond N. Greenwell (Emeritus),
Hofstra University, Hempstead, NY; and the proposer.

All in the Family

K-3 Proposed by Stephen L. Plett. Choose any real number
p>1 and form a family of curves

F:{yK = Kx(ph)| x, K real}. a) Show that the orthogonal

trajectories constitute a family of ellipses, and b) express their
common eccentricity in terms of p.

Solution by Raymond N. Greenwell. a) For the given family

of curves, the slopes are given by
2

Y _ K(p)x' " =2 p2x ' =22 Therefore, the

dx x? X

orthogonal trajectories are given by the differential equation
Y __
dx  p'y

Separating variables and integrating gives

2.2 2
2 Py X
dy=—|xdx and —=——+4C" or
_[Py Ly I > )
2
x2+]/y > =C, where C=2C". This is the equation of an
p

ellipse with a® =1 and b’ =L2, where b* <1 since p>1.
p

b) For ellipses of the form in part a), the eccentricity is

Jai=p* _\1-1/p* P’ -1

a 1 p

e =

Also solved by Ivan Retamoso; Bryan Wilson; and the
proposer.

Keeping It Real!

K-4 Proposed by Michael W. Ecker. With complex
variable z=x+yi and complex constant c¢=a+bi, let

w=(z—c)’. Identify and graph all points (x, y,w) for which

w is real-valued.

Similar Solutions by Raymond N. Greenwell, Ivan
Retamoso, Albert Natian, and the proposer (each
independently).

To visualize this, think of the x, y axes as making up a “flat”
base plane, and the third dimension “up” will be Re(w) (real
part of w). As (p+qi)’ = p° —q” +2pqi isreal iff p=0 or
g=0, so w=(z—c)’ =((x—a)+(y—b)i)* isreal iff x=a
or y=>.

Case A: x=a describes a plane parallel to the y, Re(w)
plane. Substitute x =a into w to get w=—(y—b)’. So, one
portion of the solution is the “max” parabola w=—(y—b)’
in the plane x = a. Note that the vertex point (a,b) in the x,
v plane is the sole point on this part of the graph with w=0.




Case B: y=»b describes a plane parallel to the x, Re(w)
plane. Substitute y =5 into w to get w=(x—a)’. So, one
portion of the solution is the “min” parabola w = (x—a)’ in
the plane y =b. Note that the vertex point (a,b) in the x, y
plane is the sole point on this part of the graph with w=0.

Figure with third dimension up actually being Re(w)
Trouble Keeping Time

K-S Proposed by Bryan Wilson. A poorly designed clock
has hour and minute hands the same length and shape.
Assume the hands move continuously. There are some times
during the day during which, even with precise measurement,
there are two possible interpretations of the time (such as
about 1:21 or 4:07). How many such times between noon and
midnight will there be two possible interpretations of the
time?

Similar solutions by Raymond N Greenwell and the
Proposer. Let x be the position of the hour hand in minutes
after noon inside the interval [0, 720). Similarly, let v be the

position of the minute hand, and note that y =12xmod 720.
A position is ambiguous if we also have x =12y mod 720

since we use the same congruence but reversing the roles of
the hands. Substituting the first congruence into the second,
we obtain x=12(12x)mod 720 which can be rewritten

143x = 0mod 720. Thus 143x =720k or x = %k for some

integer k. There are 143 values of & that result in unique
720

values of x mod 720. These come every m ~5.035

minutes starting at noon. However, 11 of these correspond to
times that the hour and minute hands are in the same position,

which is not ambiguous. So, the total number of ambiguous
times is 132.

Also solved by Troy Williamson.
Rationally Sequential Is Sequentially Rational

K-6 Proposed by Michael W. Ecker. a) Given three distinct
rational numbers, prove there exists an arithmetic sequence
that includes them. b) Is the sequence unique? If there is more
than one such arithmetic sequence, how are they related? c)
Same questions for any finite number 7 > 1 of rationals.

Essentially Same Solution by the Proposer and Raymond
N. Greenwell (independently).

a ¢ e . .

a) We have — < — <—, with each fraction in lowest terms.
b d f

Let L =bdf. Then we can write each of the three fractions in

the form % where & runs through the integers. Specifically,

df _adf c_c bf _be

a e bd bde
bdf L d db L

£ .
f fbd L
k

constitutes an

B

a
b
However, the set of these fractions

. . . . 1
arithmetic sequence with common difference T b) The

sequence is not unique. For example, the sequence that has
the greatest possible common difference is the one for which
we repeat step a) but with L instead equal to the least common
multiple of b, d, f. (In case these three integers b, d, f are
pairwise relatively prime, L is the same as before.) In fact, all
arithmetic sequences containing the given three rational
numbers have a common difference that is an integral divisor

. . 1 . .
of this particular z, where L is the least common multiple

of b, d, f. In other words, this particular arithmetic sequence,
for this one value of L, is the “fattest” one — meaning, it has
the greatest possible common difference. ¢) This argument
generalizes to any number » of rationals. Just let L first be the
product of the » denominators to get one representation, and
then let L instead be the least common multiple of the n
denominators, doing so in the same way as we just did for 3
denominators.

Also solved by Yutong Liu, East Los Angeles College, Los
Angeles, CA; and Troy Williamson.
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