$d \in S$. Hence $d = x_1$, so $x_2 = 2x_1$. Next consider $d' = x_3 - x_2 < x_3$. This is in S and forces either $d = x_1$ or $d' = x_2$. In the latter case, we would have $x_3 = x_2 + d' = 2x_2 = 4x_1$. This in turn implies $x_2 = 2x_1 < 3x_1 < 4x_1 = x_3$, which is impossible, because $x_3 - x_1 = 3x_1$ would have to be an element of S by the definition, and yet there can be no element between x_2 and x_3 . Similar arguments then show that each difference is the same $d = x_1$. I'll omit the details. Bottom line is that we may think of every such possible finite set S as being of the form $x_1S = x_1\{1,2,3,...n\} = \{x_1,2x_1,3x_1,...,nx_1\}, x_1 \neq 0$.

QN-2 If set S has a largest element m, then for all elements x < m, we wish to show that f(x) = f(m). (This could be for a finite set or a closed interval, for instance.) As in QN-1, by (*) we can pair each element x in S with another element m-x in S, so applying (**) to m-x < m we get f(m-(m-x)) = f(x) = f(m). So, f is constant in this case, its value always being f(m). Now suppose S lacks a largest element (such as with an open interval, the set of all natural numbers, etc.). Choose any two elements $a,b \in S$ with a < b. Now choose a still larger element c. Once again, we can work with c-a and c-b both in S to get f(c-(c-a)) = f(a) = f(c) and likewise get f(b) = f(c). Hence, f(b) = f(a) for any pair a, b in S. We do obtain that f must be a constant function in any case.

We let (1, 1) be the center of circle A and observe that the center of circles S and L is the origin. Let O represent the origin, P the point where S is tangent to A, and R the point where A is tangent to L. The radius of L is $OA + AR = \sqrt{2} + 1$, while the radius of S is $OA - PA = \sqrt{2} - 1$. The desired ratio is now $\frac{\sqrt{2}+1}{\sqrt{N}-1} = (\sqrt{2}+1)^2 = 3 + 2\sqrt{2}$.

We try a "greedy' approach with the same numbers of each coin. If we use q quarters, then we also use q each of dimes, nickels, and pennies, giving .25q + .10q + .05q + .01q = .41q = 1000 as the total value. Thus, we would get $q = \frac{1000}{.41} \approx 2439.0244$ so we use 2,439 each of quarters, dimes, and nickels giving a total of \$975.60, leaving 100000-97560 = 2,440 pennies. So, 9,757 coins is the total minimum number.

QN-5

Because f is even, the area we seek over the entire real line is the same as the area under the curve $F(x) = 2f(x) = \frac{1}{|x|!}$ over $[0,\infty)$. Break

this interval up using integers, as follows: On [0, 1), $F(x) = \frac{1}{\lfloor x \rfloor!} = \frac{1}{0!} = 1$; on [1, 2), $F(x) = \frac{1}{\lfloor x \rfloor!} = \frac{1}{1!} = 1$; on [2,

3), $F(x) = \frac{1}{|x|!} = \frac{1}{2!} = \frac{1}{2}$; and on each interval [n, n+1),

 $F(x) = \frac{1}{\lfloor x \rfloor!} = \frac{1}{n!}$. The total area is then the sum of these

areas, or $\sum_{n=0}^{\infty} \frac{1}{n!} = e.$

QN-6

Solution I: From the definition of BA, we have the inequality $\frac{200x + 300(162 - x)}{162} \ge 240.$

Cross-multiply to get $300(162)-100x \ge 240 \cdot 162$ or $60(162) \ge 100x$ yielding $x \le 97.2$ games. As we want the largest possible value of x with BA at least 240, we find x = 97 games. Easier Solution II: As 240 is 2/5 of the way from 200 to 300, we carve up the 162-game span into fifths, recognizing that we need the point that is just 2/5 of the way from 162 down to 0, or 3/5 of the way from 0 up to 162. So,

 $x = 0 + \frac{3}{5} \cdot 162 = 97.2$ games. Once again, we have to truncate this to 97.

Solutions to Problems from Previous Issues

What Remains Within

K-1 Proposed By Mark Moodie, San Jacinto College, North Campus, Houston, TX. Find the remainder when $x + x^9 + x^{25} + x^{49} + \cdots + x^{4045^2}$ is divided by $x^3 - 1$.

Solution by Ivan Retamoso, Borough of Manhattan Community College, New York, NY, and Bryan Wilson, Contributing Editor (independently). Label the cube roots

of unity by 1, $\omega = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$, and $\omega^2 = -\frac{1}{2} - \frac{\sqrt{3}}{2}i = \overline{\omega}$. Note that $\overline{\omega}^2 = \omega$, $\omega + \overline{\omega} = -1$, and $\omega - \overline{\omega} = i\sqrt{3}$. Set $P(x) = x + x^9 + x^{25} + x^{49} + \dots + x^{4045^2}$

= $Q(x)(x^3-1) + ax^2 + bx + c$. Substituting each of the cube roots of unity into this identity and noting that $1^3 = \omega^3 = (\overline{\omega})^3 = 1$ results in the three equations

$$1+1+1+...+1 = a+b+c$$

$$\omega+1+\omega+\omega+1+... = a\omega^2+b\omega+c = a\overline{\omega}+b\omega+c$$

$$\overline{\omega}+1+\overline{\omega}+\overline{\omega}+1+... = a\overline{\omega}^2+b\overline{\omega}+c = a\omega+b\overline{\omega}+c$$

The exponents in P have the form $(2n+1)^2$ for n from 0 to 2022, resulting in 2023 terms. The exponent is a multiple of 3 precisely if $n \equiv 1 \mod 3$, so the second and third equations have 674 terms of 1 and 1349 terms that are not 1. We rewrite our equations as

$$2023 = a + b + c \tag{1}$$

$$674 + 1349\omega = a\overline{\omega} + b\omega + c \tag{2}$$

$$674 + 1349\overline{\omega} = a\omega + b\overline{\omega} + c \tag{3}$$

Adding equations 2 and 3 results in -1 = -a - b + 2c. Adding this to equation 1 yields 2022 = 3c, or c = 674. Subtracting equation 3 from equation 2 yields $1349i\sqrt{3} = -ai\sqrt{3} + bi\sqrt{3}$, or 1349 = -a + b. This can be solved with equation 1 as a two-variable system to obtain a = 0 and b = 1349. So, the requested remainder is 1349x + 674.

Also solved by Troy Williamson, Texas State Technical College, Abilene, TX.

It All Adds Up!

K-2 Proposed by Michael W. Ecker, inspired by QK-1 in that same issue. An additive sequence $\langle a_n \rangle$ has the property that $a_n = a_{n-1} + a_{n-2} \ \forall n \ge 3$, with given initial $a_1 = a$ and $a_2 = b$.

- a) Find a formula for $\sum_{i=1}^{n} a_i$ in terms only of a, b, and other known elements.
- b) Show that this sum equals $a_{n+2}-1$ (as with the Fibonacci sequence) if and only if b=1.
- c) Show that this sum equals a_{n+2} (as with multiples of the Fibonacci sequence) if and only if b=0. What is a_{n+2} then in this case?

Solution by Henry Ricardo, Westchester Area Math Circle, Purchase, NY. By the defining relation,

$$\sum_{i=1}^{n} a_i = a+b+\sum_{i=3}^{n} a_i = a+b+\sum_{i=3}^{n} (a_{i+2}-a_{i+1})$$
$$= a+b+(a_{n+2}-a_4) = a+b+a_{n+2}-(a+2b) = a_{n+2}-b,$$

and this formula immediately implies the initial statements of parts b) and c). If b=0, then $a_{n+2}=F_n\cdot a$, where F_n denotes the nth Fibonacci number. (Problems Editor's Note: This is a result easily proved by induction — or as a consequence of the more general relation $a_n=F_{n-2}a+F_{n-1}b$ that has previously appeared more than once in this journal, including in this column.)

Also solved by Raymond N. Greenwell (Emeritus), Hofstra University, Hempstead, NY; and the proposer.

All in the Family

K-3 Proposed by Stephen L. Plett. Choose any real number p > 1 and form a family of curves $F: \left\{ y_K = Kx^{\left(p^2\right)} \middle| x, K \ real \right\}$. a) Show that the orthogonal trajectories constitute a family of ellipses, and b) express their common eccentricity in terms of p.

Solution by Raymond N. Greenwell. a) For the given family of curves, the slopes are given by $\frac{dy}{dx} = K(p^2)x^{p^2-1} = \frac{y}{x^{p^2}} \cdot p^2 x^{p^2-1} = \frac{p^2 y}{x}.$ Therefore, the orthogonal trajectories are given by the differential equation $\frac{dy}{dx} = -\frac{x}{p^2 y}.$ Separating variables and integrating gives

$$\int p^2 y \, dy = -\int x \, dx \qquad \text{and} \qquad \frac{p^2 y^2}{2} = -\frac{x^2}{2} + C' \qquad \text{or}$$

$$x^2 + \frac{y^2}{1/p^2} = C, \text{ where } C = 2C'. \text{ This is the equation of an}$$

ellipse with $a^2 = 1$ and $b^2 = \frac{1}{p^2}$, where $b^2 < 1$ since p > 1.

b) For ellipses of the form in part a), the eccentricity is
$$e = \frac{\sqrt{a^2 - b^2}}{a} = \frac{\sqrt{1 - 1/p^2}}{1} = \frac{\sqrt{p^2 - 1}}{p}.$$

Also solved by Ivan Retamoso; Bryan Wilson; and the proposer.

Keeping It Real!

K-4 Proposed by Michael W. Ecker. With complex variable z = x + yi and complex constant c = a + bi, let $w = (z - c)^2$. Identify and graph all points (x, y, w) for which w is real-valued.

Similar Solutions by Raymond N. Greenwell, Ivan Retamoso, Albert Natian, and the proposer (each independently).

To visualize this, think of the x, y axes as making up a "flat" base plane, and the third dimension "up" will be Re(w) (real part of w). As $(p+qi)^2 = p^2 - q^2 + 2pqi$ is real iff p=0 or q=0, so $w=(z-c)^2=((x-a)+(y-b)i)^2$ is real iff x=a or y=b.

Case A: x = a describes a plane parallel to the y, Re(w) plane. Substitute x = a into w to get $w = -(y-b)^2$. So, one portion of the solution is the "max" parabola $w = -(y-b)^2$ in the plane x = a. Note that the vertex point (a,b) in the x, y plane is the sole point on this part of the graph with w = 0.