The Problem Corner
Ivan Retamoso, The Problem Corner Editor
Borough of Manhattan Community College
iretamoso@bmcc.cuny.edu

The Purpose of The Problem Corner is to give Students and Instructors working independently or together a chance to step out of their "comfort zone" and solve challenging problems. Rather than in the solutions alone, we are interested in methods, strategies, and original ideas following the path toward figuring out the final solutions. We also encourage our Readers to propose new problems. To submit a solution, type it in Microsoft Word, using math type or equation editor, however PDF files are also acceptable. Email your solution as an attachment to The Problem Corner Editor iretamoso@bmcc.cuny.edu stating your name, institutional affiliation, city, state, and country. Solutions to posted problem must contain detailed explanation of how the problem was solved. The best solution will be published in a future issue of MTRJ, and correct solutions will be given recognition. To propose a problem, type it in Microsoft Word, using math type or equation editor, email your proposed problem as an attachment to The Problem Corner Editor iretamoso@bmcc.cuny.edu stating your name, institutional affiliation, city, state, and country.

Problem 1

Let $A B C D$ be a square with side length 1 meter and let M be the midpoint of the segment $A B$. While connecting D and M, draw a perpendicular segment from point C to the segment $D M$. Marking as P the point of the intersection of the perpendicular and the segment $D M$. Find the length of the segment $P B$.

