Vol 13, no 3
FALL 2021

The Problem Corner
Ivan Retamoso, PhD, The Problem Corner Editor
Borough of Manhattan Community College
iretamoso@bmcc.cuny.edu

The Purpose of The Problem Corner is to give Students and Instructors working independently or together a chance to step out of their "comfort zone" and solve challenging problems. Rather than in the solutions alone, we are interested in methods, strategies, and original ideas following the path toward figuring out the final solutions. We also encourage our Readers to propose new problems. To submit a solution, type it in Microsoft Word, using math type or equation editor, however PDF files are also acceptable. Email your solution as an attachment to The Problem Corner Editor iretamoso@bmcc.cuny.edu stating your name, institutional affiliation, city, state, and country. Solutions to posted problem must contain detailed explanation of how the problem was solved. The best solution will be published in a future issue of MTRJ, and correct solutions will be given recognition. To propose a problem, type it in Microsoft Word, using math type or equation editor, email your proposed problem as an attachment to The Problem Corner Editor iretamoso@bmcc.cuny.edu stating your name, institutional affiliation, city, state, and country.

Hello Problem Solvers, solutions to Problem 1 were submitted, and I am glad to report that they were correct and interesting. The solutions followed different approaches, which I hope will enrich and enhance the mathematical knowledge of our community.

Solutions to Problem 1 from a Previous Issue

Interesting Square Problem

Proposed by Ivan Retamoso

Problem 1

Let $A B C D$ be a square with side length 1 meter and let M be the midpoint of the segment $A B$. While connecting D and M, draw a perpendicular segment from point C to the segment $D M$. Marking as P the point of the intersection of the perpendicular and the segment $D M$. Find the length of the segment $P B$.

Vol 13, no 3

FALL 2021

Solution 1 by Aradhana Kumari, Borough of Manhattan Community College.

This solution is mainly based on Trigonometric properties such as The Law of Cosines, together with Tangent Inverse, it is important to notice that this solution does not require auxiliary lines, which makes it appealing to readers which consider auxiliary lines hard to "figure out", additionally, the "exact form" of the solution could lead to a general formula for the length of the segment $P B$ for an arbitrary side length of a given square.

Solution: From the right triangle MAD,
$\tan \angle A D M=\frac{\text { length of side } A M}{\text { lenght of side } A D}=\frac{1 / 2}{1}$
Therefore $\angle A D M=\tan ^{-1}(1 / 2)$
hence $\angle P D C=90^{\circ}-\tan ^{-1}(1 / 2) \ldots . .(1)$

Now consider the right triangle DPC,
$\angle \mathrm{PDC}=90^{\circ}-\tan ^{-1}(1 / 2)$,
hence $\angle P C D=\tan ^{-1}(1 / 2)$,

Vol 13, no 3

FALL 2021

$$
\angle P C B=90^{\circ}-\tan ^{-1}(1 / 2) \ldots
$$

Again, consider the right triangle DPC
We have $\operatorname{Sin} \angle \mathrm{PDC}=\operatorname{Sin}\left(90^{\circ}-\tan ^{-1}(1 / 2)\right)=\frac{\text { length of side } P C}{\text { lenght of } \operatorname{side} D C}=\frac{\text { length of side } P C}{1}$,

Therefore, the length of side $P C=\operatorname{Sin}\left(90^{\circ}-\tan ^{-1}(1 / 2)\right) \ldots \ldots$. (3)

Now consider the triangle PCB, using the cosine rule,
(length of side PB) ${ }^{2}$
$=(\text { length of side } B C)^{2}+(\text { length of side } C P)^{2}-2$ (length of side $\left.B C\right) \times($ length of side $C P)$ Cosine $\angle B C P$,
therefore, Length of side PB =

$$
\sqrt{(\text { length of side } B C)^{2}+(\text { length of side } \mathrm{PC})^{2}-2(\text { length of side } \mathrm{BC}) \times(\text { length of side } \mathrm{PC}) \times \text { Cosine } \angle \mathrm{BCP}}
$$

Substituting the value of length of side BC (=1),
length of side $\mathrm{PC}=\operatorname{Sin}\left(90^{\circ}-\tan ^{-1}(1 / 2)\right),($ from equation $(3))$,
and measure of $\angle B C P=90^{\circ}-\tan ^{-1}(1 / 2)$ (from equation 2$)$,
in equation given by (4) we get length of side PB
$=$ length of segment PB

Vol 13, no 3
FALL 2021

$$
\begin{aligned}
& =\sqrt{1+\left[\operatorname{Sin}\left(90^{\circ}-\tan ^{-1}(1 / 2)\right)\right]^{2}-2 \times 1 \times \operatorname{Sin}\left(90^{\circ}-\tan ^{-1}(1 / 2)\right) \times \operatorname{Cos}\left(90^{\circ}-\tan ^{-1}(1 / 2)\right)} \\
& =\sqrt{1+\left[\operatorname{Sin}\left(90^{\circ}-\tan ^{-1}(1 / 2)\right)\right]^{2}-2 \operatorname{Sin}\left(90^{\circ}-\tan ^{-1}(1 / 2)\right) \times \operatorname{Cos}\left(90^{\circ}-\tan ^{-1}(1 / 2)\right)} \\
& =1
\end{aligned}
$$

Solution 2 by Aradhana Kumari, Borough of Manhattan Community College.

This second solution uses Geometric properties such as the theorem of Pythagoras and two auxiliary lines together with Heron's formula for the computation of the area of a triangle, this solution serves to show that different paths can takes us to the same truth.

Vol 13, no 3

FALL 2021

Solution:

Consider the right triangle DAM , we have $\mathrm{AM}=\frac{1}{2}$ and $\mathrm{DA}=1$
Since $(A M)^{2}+(D A)^{2}=(D M)^{2}$
Hence $(D M)^{2}=\left(\frac{1}{2}\right)^{2}+(1)^{2}=\frac{1}{4}+1=\frac{5}{4}$
Therefor DM $=\sqrt{\frac{5}{4}}=\frac{\sqrt{5}}{2}$

Consider the right triangle CBM, we have
$\mathrm{CM}=\sqrt{(1)^{2}+\left(\frac{1}{2}\right)^{2}}=\sqrt{\frac{5}{4}}=\frac{\sqrt{5}}{2}$ Consider the triangle $\mathrm{DMC}, \mathrm{DM}=\frac{\sqrt{5}}{2}, \mathrm{CM}=\frac{\sqrt{5}}{2}, \mathrm{DC}=1$

Since Area of the triangle DMC
$=\frac{D M \times P C}{2}=\sqrt{S(S-a)(S-b)(S-c)}$

Vol 13, no 3

FALL 2021
where $S=\frac{(a+b+c)}{2}$,
a = length of side DM
b = length of side CM
$c=$ length of side DC
$S=\frac{\left[\frac{\sqrt{5}}{2}+\frac{\sqrt{5}}{2}+1\right]}{2}=\frac{1+\sqrt{5}}{2}$

Substituting the value of S, a, b, and c in equation given by (2) we get

$$
\begin{aligned}
& \frac{D M \times P C}{2}= \\
& =\sqrt{\left(\frac{1+\sqrt{5}}{2}\right)\left(\frac{1+\sqrt{5}}{2}-\frac{\sqrt{5}}{2}\right)\left(\frac{1+\sqrt{5}}{2}-\frac{\sqrt{5}}{2}\right)\left(\frac{1+\sqrt{5}}{2}-1\right)} \\
& =\sqrt{\left(\frac{1+\sqrt{5}}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{\sqrt{5}-1}{2}\right)} \\
& =\sqrt{\left(\frac{1}{16}\right)(\sqrt{5}-1)(\sqrt{5}+1)} \\
& =\frac{1}{4} \sqrt{(\sqrt{5}-1)(\sqrt{5}+1)} \\
& =\frac{1}{4} \sqrt{(\sqrt{5})^{2}-(1)^{2}}=\frac{1}{4} \sqrt{4}=\frac{2}{4}=\frac{1}{2}
\end{aligned}
$$

Vol 13, no 3
FALL 2021

$$
\frac{D M \times P C}{2}=\frac{1}{2}
$$

$\mathrm{DM} \times P C=1$
$P C=\frac{1}{D M}=\frac{1}{\frac{\sqrt{5}}{2}}=\frac{2}{\sqrt{5}}$

Consider the right triangle DPC, we have $(D P)^{2}+(P C)^{2}=(D C)^{2}$

Therefore DP $=\sqrt{(1)^{2}-\left(\frac{2}{\sqrt{5}}\right)^{2}}=\sqrt{1-\frac{4}{5}}=\frac{1}{\sqrt{5}}$

Since DM = DP + PM
$P M=D M-D P$

$$
=\frac{\sqrt{5}}{2}-\frac{1}{\sqrt{5}}=\frac{5-2}{2 \sqrt{5}}=\frac{3}{2 \sqrt{5}}
$$

$P M=\frac{3}{2 \sqrt{5}}$

Draw a perpendicular from P on the segment $A M$, where it intersects the segment $A M$ call it Q.

Consider the right triangle DAM and right triangle PQM, since they both have the same acute angle, angle DAM (or angle PMQ) hence right triangle DAM and right triangle PMQ are similar triangle,

Vol 13, no 3
FALL 2021

Therefore $\frac{D A}{P Q}=\frac{D M}{P M}$

Hence PQ $=\frac{D A \times P M}{D M}$
substituting the value $D A=1, P M=\frac{3}{2 \sqrt{5}} \quad\left(\right.$ from (3)), DM $=\frac{\sqrt{5}}{2}$ (from (1)) we have

Hence PQ $=\frac{D A \times P M}{D M}=\frac{1 \times \frac{3}{2 \sqrt{5}}}{\frac{\sqrt{5}}{2}}=\frac{3}{2 \sqrt{5}} \times \frac{2}{\sqrt{5}}=\frac{3}{5}$
$P Q=\frac{3}{5}$

Consider again the similar triangle DAM and PQM

We have $\frac{D A}{P Q}=\frac{A M}{Q M}$

Therefore $\mathrm{QM}=\frac{A M \times P Q}{D A}$, substituting the value of $\mathrm{AM}=\frac{1}{2}, \mathrm{PQ}=\frac{3}{5} \quad($ from (4)), $\mathrm{DA}=1$, we have
$\mathrm{QM}=\frac{\frac{1}{2} \times \frac{3}{5}}{1}=\frac{3}{10}$

Since $Q B=Q M+M B$, since $Q M=\frac{3}{10}$, and $M B=\frac{1}{2}$ (since M is the midpoint of the side $A B$ hence $M B=\frac{1}{2}$)

Vol 13, no 3
FALL 2021

$$
=\frac{3}{10}+\frac{1}{2}=\frac{8}{10}=\frac{4}{5}
$$

$\mathrm{QB}=\frac{4}{5}$.

Consider the right triangle PQB, we have

$(P Q)^{2}+(Q B)^{2}=(P B)^{2}$

Therefore $\mathrm{PB}=\sqrt{(\mathrm{PQ})^{2}+(\mathrm{QB})^{2}}$

$$
=\sqrt{\left(\frac{3}{5}\right)^{2}+\left(\frac{4}{5}\right)}=\sqrt{\frac{9}{25}+\frac{16}{25}}
$$

Vol 13, no 3

FALL 2021

$$
=\sqrt{\frac{25}{25}}=1
$$

Therefore, the length of segment $\mathrm{PB}=1$ meter

Solution 3 by the proposer Ivan Retamoso, Borough of Manhattan Community College.

This solution uses basic facts from Geometry and 2 auxiliary lines, even though it is difficult to figure out the auxiliary lines needed to solve the problem, it shows that, in some cases, basic properties could lead to remarkable results.

Extend $D M$ and $C B$ until they intersect at point $F . M B$ is parallel to $D C$, the length of $M B$ is half the length of $D C, \triangle M B F$ is similar to $\triangle D C F$ then B is midpoint of $C F$ and $P B$ is the median of the right triangle $C P F$, since in a right triangle the length of the median to the hypothenuse is equal to half the length of the hypothenuse then the length of $P B$ is 1 meter.

Vol 13, no 3

FALL 2021

Also solved by Jesse Wolf.

I hope you enjoyed solving Problem 1, below is the next problem.

Problem 2

The distance between Paul's home and his School is 2 miles. One day after his school day is over, Paul decides to walk back home by taking 2 straight paths perpendicular to each other, assume the territory where Paul's home and his school are located allows him to do it, any way he wishes as long as the 2 straight paths are perpendicular to each other.
a) What is the total length of the largest path Paul can take to go back home from his school?
b) Give a compass and straightedge construction of the path you found in part a) starting from the distance between Paul's home and his School which is 2 miles, using any scale to represent a mile.

