The Problem Corner

Ivan Retamoso, PhD, The Problem Corner Editor
Borough of Manhattan Community College
iretamoso@bmcc.cuny.edu

The Purpose of The Problem Corner is to give Students and Instructors working independently or together a chance to step out of their "comfort zone" and solve challenging problems. Rather than in the solutions alone, we are interested in methods, strategies, and original ideas following the path toward figuring out the final solutions. We also encourage our Readers to propose new problems. To submit a solution, type it in Microsoft Word, using math type or equation editor, however PDF files are also acceptable. Email your solution as an attachment to The Problem Corner Editor iretamoso@bmcc.cuny.edu stating your name, institutional affiliation, city, state, and country. Solutions to posted problem must contain detailed explanation of how the problem was solved. The best solution will be published in a future issue of MTRJ, and correct solutions will be given recognition. To propose a problem, type it in Microsoft Word, using math type or equation editor, email your proposed problem as an attachment to The Problem Corner Editor iretamoso@bmcc.cuny.edu stating your name, institutional affiliation, city, state, and country.

Hello Problem Solvers, I got solutions to Problem 3, and I am happy to inform that they were correct, interesting, and ingenious. By posting different solutions, I hope to enrich and enhance the mathematical knowledge of our international community.

Solutions to Problem from the Previous Issue

Interesting Geometric Problem with a surprising solution.

Proposed by Aradhana Kumari Borough of Manhattan Community College, City university of New York, USA

Problem 3

Triangle ABC is an equilateral triangle inscribed in a circle. D and E are the mid points of sides AC and BC respectively. Find the ratio, length DF : length DE ?

Solution 1

by Jayendra Jha, Arihant Public School, India
and Sankalp Savaran, Shiv jyoti Senior Secondary School, India.
This solution, interestingly, combines Geometry (Centroid property and the Theorem of Pythagoras) and Trigonometry (sine and cosines of angles 30°, and 60°), and some basic algebra, ending up with the solution in exact form.

Solution 2

by Aradhana Kumari, Borough of Manhattan Community College, City university of New
York, USA (The proposer).
This solution is based on a clever change of variable, an auxiliary extension of a segment together with the Intersecting chords theorem.

Let the length of sides of the equilateral triangle $A B C$ as $2 x$. Since D is the midpoint of $C A$ and E is the midpoint of $C B$ therefore the length of $C D$ and $C E$ is x.

In the triangle CDE,
length $C D=$ length $C E=x$
hence angle CDE = angle CED
since the angle DCE is 60°
angle CDE + angle CED $+60^{\circ}=180^{\circ}$
angle $C D E+$ angle $C D E+60^{\circ}=180^{\circ}$
$2 \times$ angle CDE $=120^{\circ}$
Angle CDE $=60^{\circ}$
Hence triangle CDE is an equilateral triangle with side lengths x.
Let the length of $E F=y$ then length of $D F=x+y$ and length of $D G=y$.

Intersecting chord theorem: If two chords intersect in a circle, then the products of the measures of the segments of the chords are equal. (The below picture is taken from Wikipedia.)

In the below diagram the two chords GF and CA are intersecting at D.

Hence by intersecting chord theorem, we have
length of $G D \times$ length $D F=$ length $C D \times$ length $D A$
$y(x+y)=x \cdot x$
$\frac{(\mathrm{x}+\mathrm{y})}{\mathrm{x}}=\frac{x}{y}$
$\frac{x}{x}+\frac{y}{x}=\frac{x}{y}$ \qquad

Substitute $\frac{x}{y}=\alpha$ in the above equation given by (1)
We get $1+\frac{1}{\alpha}=\alpha$
After simplifying we get $\alpha+1=\alpha^{2}$
or $\alpha^{2}-\alpha-1=0$
therefore $\alpha=\frac{1+\sqrt{5}}{2}$ hence $\frac{x}{y}=\frac{1+\sqrt{5}}{2}$
Therefore
$\frac{\text { lenght } D F}{\text { lenght } D E}=\frac{x+y}{x}=\frac{x}{y}=\frac{1+\sqrt{5}}{2}$

Note: $\frac{1+\sqrt{5}}{2}$ is also known as golden ratio.

Solution 3

by Ivan Retamoso, Borough of Manhattan Community College, USA (Editor of The Problem Corner).

This solution uses an auxiliary line and exploits the symmetry and the independence of the units of measurarements, since the solution is a ratio.

Since we are looking for a ratio, without loss of generality, let the side length of the equilateral tringle be 2 units.

Then $\overline{A B}=2, \overline{D E}=1, \overline{E C}=1$, and $\overline{E B}=1$

Let's extend $D E$ to the left, where $D E$ meets the circle let's call this point G, let x be the length $E F$ and $G D$ which are the same due to Symmetry as shown in the figure below

By The Intersecting Chords Theorem
$\overline{G E} \cdot \overline{E F}=\overline{C E} \cdot \overline{E B}$
$(x+1) \cdot x=1 \cdot 1$
$x^{2}+x=1$
$x^{2}+x-1=0$
$x=\frac{-1+\sqrt{5}}{2}$
Then
$\frac{\overline{D F}}{\overline{D E}}=\frac{1+\frac{-1+\sqrt{5}}{2}}{1}$
Then
$\frac{\overline{D F}}{\overline{D E}}=\frac{1+\sqrt{5}}{2}$
Note:
The number $\frac{1+\sqrt{5}}{2}$ is "The Golden Ratio", amazing!

Dear Problem Solvers,

I really hope you enjoyed solving Problem 3 as much as I did, below are the next two problems, I am happy to tell you that a Canadian professor has proposed a "proof" problem, I must warn you it is a little advance, but it is accompanied with hints and graphs as help.

Vol 14 no 2

Problem 4

Proposed by Ivan Retamoso, BMCC, USA
In a cartesian plane, between the half of the parabola $y=\frac{x^{2}}{2}$ for $x \geq 0$ and the $x-$ axis there is a circle tangent to the parabola at the point $(2,2)$ and to the x-axis, find the radius of the circle.

Problem 5

Proposed by Mohsen Soltanifar, Adjunct Instructor, Continuing Studies Division, University of Victoria, Victoria, BC, Canada

Let $f(x)=x^{x}(x>0)$ be the second tetration function. Prove that f is continuous merely using the $\epsilon-\delta$ definition.

Figure 1: The plot of the second tetration function $f(x)=x^{x}(x>0)$.

Hint:

Step (i) Prove that the logarithm function $\ln ($.$) is continuous using the \epsilon-\delta$ definition, and save $\delta=\delta(\epsilon)$.

Step (ii) Prove that the exponential function $\exp ($.$) is continuous using the \epsilon-\delta$ definition, and save $\delta=\delta(\epsilon)$.

Step (iii) Prove that if the function $g($.$) Is continuous at x=a$ and the function $f($.$) Is$ continuous at $y=g(a)$, then the function $f \circ g($.$) Is continuous at x=a$, using the $\epsilon-\delta$ definition.

Step (iv) Use steps (i),(ii) and (iii) for $f(x)=\exp (x)$, and $g(x)=x \ln (x)$ in reversed method to prove the statement for the second tetration function.

Figure 2: The plot of the three functions $f(x)=\exp (x), \ln (x), x \ln (x),(x>0)$.

