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iretamoso@bmcc.cuny.edu 
 

The Purpose of The Problem Corner is to give Students and Instructors working independently 
or together a chance to step out of their “comfort zone” and solve challenging problems.  Rather 
than in the solutions alone, we are interested in methods, strategies, and original ideas following 
the path toward figuring out the final solutions. We also encourage our Readers to propose new 
problems. To submit a solution, type it in Microsoft Word, using math type or equation editor, 
however PDF files are also acceptable. Email your solution as an attachment to The Problem 
Corner Editor iretamoso@bmcc.cuny.edu stating your name, institutional affiliation, city, state, 
and country. Solutions to posted problem must contain detailed explanation of how the problem 
was solved. The best solution will be published in a future issue of MTRJ, and correct solutions 
will be given recognition. To propose a problem, type it in Microsoft Word, using math type or 
equation editor, email your proposed problem as an attachment to The Problem Corner Editor 
iretamoso@bmcc.cuny.edu stating your name, institutional affiliation, city, state, and country.  

 

Greetings, fellow problem solvers! 

I am delighted to announce that I have received solutions to both Problem 12 and Problem 13, 
and I am pleased to report that they were all correct, as well as fascinating and innovative. By 
showcasing what I deemed to be the most outstanding solutions, I aim to enrich and elevate the 
mathematical understanding of our global community. 

 

Solutions to Problems from the Previous Issue 

Interesting “Dog walking” problem. 

Problem 12 

Proposed by Ivan Retamoso, BMCC, USA. 

Eva is standing still holding her dog via an extendable leash which she keeps at the heigh of 
1.18	𝑚 above the ground as shown in the figure below, suddenly her dog walks to the right at a 
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constant speed of 0.9!
"

 , at what rate is the leash extending when the end of the leash is 3𝑚 
horizontally away from Eva? 

 

Solution to problem 12 

By Phuong Uy Nguyen, Borough of Manhattan Community College, Vietnam. 

This efficient solution employs carefully chosen variables to establish an equation based on the 
Pythagorean theorem, ensuring its validity throughout Eva and her dog's motion. By isolating 
the main variable and utilizing differentiation with respect to time, incorporating the chain rule, 
our problem solver determines the rate at which the leash extends for the specified distance. 
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Second Solution to problem 12 

By Aradhana Kumari, Borough of Manhattan Community College, USA. 

This second solution adopts a different approach by employing implicit differentiation. After 
finding the derivative with respect to time for both sides of the equation, which holds true 
throughout Eva and her dog's motion, the required rate of change is determined. Each step of the 
solution is thoroughly justified, ensuring clarity and accuracy. Furthermore, a diagram is 
included to enhance visualization and provide a clearer understanding of the problem. 

Solution:  As per question we have the below diagram 

 

From the above diagram 

When x=3, y= (1.18-0.63= 0.55) we have 

 x2 + y2 = z2..............(1) 

32 + (0.55)2 = z2 

9 + 0.3025 = z2 

Hence z = √(9.3025) 

            z   = 3.05 

Differentiate the equation given by (1) with respect to time we get 

2x #$
#%

    + 2y #&
#%

   = 2z  #'
#%
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x #$
#%

    + y #&
#%

   = z  #'
#%

  .............(2) 

Substituting the value x=3,  #$
#%

  = .9, z = 3.05, and  #&
#%

   = 0 (Since the dog is moving with the 
constant speed on the x-direction) in equation in given by (2) we get 

3× (0.9) =    3.05  #'
#%

   

#'
#%

  = (×	(,..)	
(.,0

 = .88524590163 ≈ .89 m/s 

Hence the rate at which the lease extending when the end of the lease is 3m horizontally away 
from the Eva is approximately .89 m/s.  

 

 

“Intermediate Value Theorem” problem. 

Problem 13 

Proposed by Ivan Retamoso, BMCC, USA. 

Prove that the equation 𝑥( − 14𝑥 + 𝑘 = 0 where 𝑘 is any real number, has at most one real 
number solution in the interval [−2,2]. 

Solution to problem 13 

By Jesse Wolf, Borough of Manhattan Community College, USA. 

This comprehensive step-by-step solution utilizes various mathematical tools to ensure a 
thorough analysis. By incorporating the first derivative, the second derivative test, and The 
Intermediate Value Theorem, this solution covers all possible cases and provides rigorous 
justifications for each step. 

y = x^3 - 14x + k 

y’ = 3x^2 -14 

y” = 6x 

y’= 0 => x = + or - ((14/3)^.5) = ~ (+ or - 2.2). 

y”(-(14/3)^.5) < 0; y”((14/3)^.5) > 0. 

Second Derivative Test => there exists a relative max at x = -(14/3)^.5 and a relative min at x = 
(14/3)^.5. 
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So, y(-(14/3)^.5) > y((14/3)^.5) and is strictly decreasing on (-(14/3)^.5,(14/3)^.5)) which 
contains [-2,2]. 

1:  

If y(-(14/3)^.5) > 0 and y((14/3)^.5) > or = 0 => there exists 0 zeros of y on (-
(14/3)^.5,(14/3)^.5)) and thus 0 zeros on [-2,2]. 

2:  

If y(-(14/3)^.5) > 0 and  y((14/3)^.5) < 0 => there exists at most one zero of y on [-2,2]: 

2a:  

The fact that y is continuous and strictly decreasing on  

(-(14/3)^.5,(14/3)^.5)) => (via the Intermediate Value Theorem) that there exists a unique zero 
on that interval. 

If the zero occurs on (-(14/3)^.5, -2) or (2, (14/3)^.5)) then there exist 0 zeros on [-2,2]. 

2b: 

If the zero occurs on [-2,2] there exists 1 zero on [-2,2]. 

3:  

If y(-(14/3)^.5) = 0 and y((14/3)^.5) < 0 => there exists 0 zeros of y on (-(14/3)^.5,(14/3)^.5)) 
and thus 0 zeros on [-2,2]. 

4: 

If y((-(14/3)^.5)) < 0 and  y((14/3)^.5)) < 0 => there exists no zeros  of y on (-
(14/3)^.5,(14/3)^.5)) and thus 0 zeros on [-2,2]. 

QED 

 

Second Solution to problem 13 

By Ivan Retamoso (proposer), Borough of Manhattan Community College, USA. 

This alternative solution employs a distinct methodology. It initiates by establishing the 
negativity of the derivative of the left side of the equation within the given interval. 
Consequently, it deduces that the left side of the equation exhibits strict monotonicity, 
specifically, it must be strictly decreasing over the provided interval. 
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Let 𝑓(𝑥) = 𝑥( − 14𝑥 + 𝑘 

Then 𝑓1(𝑥) = 3𝑥2 − 14 

For all 𝑥 in [−2,2] 

−2 ≤ 𝑥 ≤ 2 

|𝑥| ≤ 2 

|𝑥|2 ≤ 22 

𝑥2 ≤ 4 

3𝑥2 ≤ 12 

3𝑥2 − 14 ≤ −2 < 0 

Then 𝑓1(𝑥) < 0 for all 𝑥 in [−2,2] 

Then 𝑓(𝑥) is strictly decreasing on [−2,2], since 𝑓(𝑥) is continuous then it means that the graph 
of 𝑓(𝑥) will intersect the 𝑥 axis at most once. 

Therefore, the equation 𝑥( − 14𝑥 + 𝑘 = 0 where 𝑘 is any real number, has at most one real 
number solution in the interval [−2,2]. 

 

Dear fellow problem solvers, 

I have confidence that your experience in solving problems 12 and 13 was not only enjoyable but 
also resulted in valuable insights. Now, let's progress to the next set of challenges, as I am 
genuinely thrilled to present you with the following two problems. 

Problem 14 

Proposed by Ivan Retamoso, BMCC, USA. 

Let's imagine a scenario where a corral is being enclosed using 130 ft of fencing. The corral is in 
the shape of a rectangle, and it has a semicircle attached to one of its sides. The diameter of the 
semicircle aligns with the length of the rectangle, as depicted in the figure provided. 
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Determine the values of 𝑥 and 𝑦 that will result in the corral having the largest possible area. 

Problem 15 

Proposed by Ivan Retamoso, BMCC, USA. 

𝑥, 𝑦, and 𝑧 are real numbers such that 𝑥 + 𝑦 + 𝑧 = 17 and 3
$4&

+ 3
&4'

+ 3
'4$

= 5
30

 find the exact 

value of $
&4'

+ &
'4$

+ '
$4&

 . 
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