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APPLICATIONS

POLYNOMIAL ROOT —FINDING HAS MODERN
APPLICATIONS IN:

* COMPUTER ALGEBRA

* CONTROL THEORY

* SIGNAL PROCESSING

* GEOMETRIC MODELING

* FINANCIAL CALCULATIONS (Internal Rate of
Return)



Another application arises in certain financial calculations, for example, to com-
pute the rate of return on an investment where a company buys a machine for, (say)
$100,000. Assume that they rent it out for 12 months at $5000/month, and for a
further 12 months at $4000/month. It is predicted that the machine will be worth
$25,000 at the end of this period. The solution goes as follows: the present value of
$1 received n months from now is H:TF’ where i 1s the monthly interest rate, as yet

unknown. Hence



25,000
100,000 =
Z (1+1p §1+1 (1+3)%

Hence

100,000(1 +7)* — Zsooouz”-f 240001“)24-1 25,000 = 0,

j=1 j=13

a polynomial equation n 1 + 1 of degree 24. If the term of the lease was many years,

as 18 often the case, the degree of the polynomial could be in the hundreds.



Solution of Cubic Equation?
Found by Cardano (16" century)

Solution of Quartic Equation?

Found by Ferrari (16t century)

Solution of Quintic equation?
Never found!



Historical Background

Niels Henrik Abel Evariste Galois

i )
1Y

In 1824 Niels Abel showed that there existed
polynomials of degree 5, whose roots could not be
expressed using radicals and arithmetic operations
through their coefficients. Here is an example of such
polynomials:

x> —4x — 2

This discovery made us aware that we are left with
iterative methods for the approximation of the roots of a
polynomial given its coefficients.



Basic Polynomial

Zp,.z: —pn]:[ T — \j).

Wherep,, # 0



COMPANION MATRIX OF p(x)
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Definition
Eigenpair of a matrix

Given a matrix M and a vector v # 0
{1, v} is an eigenpair of M if Mv = Av

Ais called an eigenvalue of M.
v is called an eigenvector of A.

A(M) is the set of all eigenvalues of M,
called the spectrum of M.



Theorem

Given p(x) and its companion matrix C,.

Ais an eigenvalue of C, < Al —(, is singular

& det(Ml -Cy)=0 & pA)=0

Thus, we deduce this simple fact:

The roots of a polynomial are precisely the
eigenvalues of its associated companion matrix.



POLYNOMIAL ROOT-FINDING BY MATRIX
ALGORITHMS

WE APPROXIMATE THE ROOTS OF A POLYNOMIAL
p(x) = pa[Tj_1(x = Aj) = po + pix + ... + pa_1X" " + ppx”

AS THE EIGENVALUES OF THE ASSOCIATED COMPANION

0 ... ... ... ...  —po/pn
/1 0o ... ... —p1/Pn \
1 ... ... ... —p2/pn

MATRIX C, =

1 0 —pa2/pn
\ 1 _pn—l/pn)




TOEPLITZ MATRIX



THE MATRIX C, GENERATES AN ALGEBRA OF n x n
MATRICES WITH STRUCTURE OF TOEPLITZ TYPE.

WE NEED O(nlogn) AR. OPS TO MULTIPLY THEM PAIRWISE
OR BY A TOEPLITZ MATRIX, AND O(nlog® n) TO INVERT
THEM (IF NONSINGULAR).

O(nlog? n) COVER THE COST OF AN ITERATION.



Comparing Complexities

m




There are many methods for the
approximation of the eigenvalues of a
matrix. They can be found in:

* Golub, MATRIX COMPUTATION
* Stewart, MATRIX ALGORITHM Vol. 2

* Watkins, FUNDAMENTALS OF MATRIX
COMPUTATIONS



THE POWER METHOD

Let AeC™*™ be a matrix with n simple and distinct
eigenvalues.

(A4, v1), (A3, v3), ..., (A, v,) are n eigenpairs of A.
|IA{] > |A;| foralli 1

Choose a random vector v.
Then

VvV =cv +Ccyvy + - +c,v, ,cq ¥ 0withprobability 1
Av = c;Avy + c,Av, + .-+ ¢, Av,
A¥v = c, A%, + c,28v, + -+, AR,

c.A%v,  for sufficiently large k

N
=

<

U

Akv =w

A = W Aw (Rayleigh quotient)

wTw




Definition of an eigenspace

S C C" is an invariant subspace or eigenspace of a matrix
Mec C"™"if Mv e S forallveS.

An example of an eigenspace is the space spanned by an
eigenvector or a set of eigenvectors.



Generalization of Power Method

MORE GENERALLY (E.G., FOR CLUSTERS OF EIGENVALUES),
APPROXIMATE AN EIGENSPACE OF EIGENVECTORS OF THE
MATRIX C, AND THEN RECOVER THE ASSOCIATED SET OF
EIGENVALUES OF C,.



Basic Theorem 1

Stewart 2001, Vol. 2, [Theorem 4.1.2].
For all matrix bases U € C"*" of an eigenspace U of M € C"*" we
have MU = UL for unique matrix L = U MU.

Where UD s a left inverse of U i.e., UDU =1
and L shares all its eigenvalues with M.



DOMINANT EIGENSPACE

Consider u as in our Basic Theorem 1, let

A(L) pe the set of eigenvalues of L , and let
A(M) be the set of eigenvalues of M

U Is a Dominant Eigenspace if :
A1 > [ul

as long as 1 € A(L) and p € (A(M) — A(L))



Method to approximate a Dominant
Eigenspace

LET &/ BE A DOMINANT EIGENSPACE OF M, dim(U) =r.
CHOOSE A STANDARD GAUSSIAN RANDOM n x r MATRIX G.

THEN RANGE (COLUMN SPAN) OF U = MG APPROXIMATES
U WITH PROBABILITY =~ 1.



A matrix M may have no Dominant Eigenspace but f (M)
does for appropriate f(x).

So next we define matrix functions.



Matrix Functions

Given f(z) a scalar rational function we naturally
define f(M) a matrix function by substituting M for
z , replacing division by matrix inversion and
replacing 1 by the identity matrix.

Example:

1422

= f(M)=U+M>)U—-M)"!

f(z) =

1—z



Basic Theorem 2

Let f be a function defined on A(M).

If Mv=Av, then f(M)v = f(Q)v

MATRIX FUNCTIONS PRESERVE EIGENSPACES OF M



REPEATED SQUARING WITH SCALING

Fy
Fo =M,  Fpyq =

for h=0,1, ..

Every squaring of a matrix squares its eigenvalues. This
strengthens the domination of the dominant
eigenvalues.

=



Basic Steps

The eigenvalues of C, will be approximated in 5
steps.

1. Apply an appropriate function /' to the matrix C,
to generate a dominant eigenspace of /(C,).

2. Compute matrix basis U for the dominant
eigenspace of /(C),).

3. Compute the matrix L as:
L=U"C,U |

4. Approximate eigenvalues of L, which L shares
with C,.

5. Deflate C, to find more eigenvalues and repeat
steps 1-5 until we find all desired eigenvalues.



NUMERICAL TEST FOR REPEATED
SQUARING (CODES)

clearvars

clc

Degree=64

p=rand(l, Degree+l);

C=compan (p) ;

M=C;

for i=1:10
M= (M"*2) /norm (M*2, 2) ;
temp=rank (M) ;
variation of rank(l,i)=temp:;

end

variation of rank

G=randn (Degree, rank (M) ) ;

U=M*G;

L=pinv (U) *C*U;

eigenvalues of L=sort(eig(L), 'desce

eigenvalues of C=sort(eig(C), '"descenc



NUMERICAL TEST FOR REPEATED
SQUARING

Degree =

64
variation_of_numerical rank =

64 64 64 64 064 8 2 2 2 2
eigenvalues_of L =

0.2054 + 1.6678i
0.2054 - 1.6678i

eigenvalues_of_C =

0.2054 + 1.6678i
0.2054 - 1.6678i
-0.3737 + 1.0324i
-0.3737 - 1.0324i
-1.0523 + 0.2863i



Numerical Test
Table for Repeated squaring

n | numerical rank/squarings | min | max | mean | std
64 numerical rank 1 10 531 | 2.79
128 numerical rank 1 10 3.69 | 2.51
256 numerical rank 1 10 4.25 | 2.67
64 squarings 6 10 7.33 | 0.83
128 squarings 5 10 7.37 | 1.16
256 squarings 5 11 7.13 | 1.17




Approximating Real roots of a
polynomial



MOTIVATION FOR APPROXIMATING
REAL ROOTS OF A POLYNOMIAL

IN VARIOUS APPLICATIONS, E.G., TO OPTIMIZATION OF

COMPUTATIONS IN ALGEBRAIC GEOMETRY, ONLY THE r
REAL ROOTS ARE OF INTEREST, AND TYPICALLY THEY

ARE MUCH LESS NUMEROUS THAN ALL n ROOTS.



Main idea

Are the r real eigenvalues 1,, 1,, ..., 4,. of C;, dominant?

NO!
Find a function f such that the eigenvalues

f(A1), f(A2), ..., f(A,) of f(C,) are dominant.



Matrix Method to Approximate Real
Roots of a polynomial

Separate Real from Nonreal roots. use a Matrix Cayley
map.

Cayley maps

for complex numbers:
z—V—1
z+vV—1

w.zZ r—

as a matrix function:

w:x — (X — IN=1)(X + IWV=1)

LetX = C,

The map above transforms: “the real axis into the unit
circle”. Hence the real eigenvalues of the input matrix
will be mapped into the unit circle and the other comple:
eigenvalues will be mapped either inside or outside of
the unit circle.

Now let M = (X — IV/=1)(X + 1\/—_1)_1

and let’s apply repeated squaring to the following two
matrices:



Apply repeated squaring to the following two
matrices:

MO = M
and
My =M1,

obtaning the sequences
Mp,

and

M,

forh = 1,2,3, ...

Then for large integers i the images of the real
eigenvalues of the input matrix (for us the companion

matrix) will strongly dominate all other eigenvalues of the
matrix:

S = (Mh + ]/W\h)_l



Test for approximating real roots

Let
p(x) = (7x% + 6x° + 5x* + 4x3 + 3x% + 2x + 1)(2x% — 1)

p(x) =14 x% +12x7 +3x° +2x° + x* —x%? —2x—1
After a Cayley map and 5 repeated squarings we output:
eigenvalues_of_L =

0.7047
-0.6696

eigenvalues_of _C =

0.4107 + 0.6399i
0.4107 - 0.6399i
-0.2051 + 0.6838i
-0.2051 - 0.6838i
0.7071 + 0.0000i
-0.7071 + 0.0000i
-0.6341 + 0.2877i
-0.6341 - 0.2877i



Table for Cayley map and Root-

squaring Algorithm

Number of real roots

Degree(n) (r) Number of Iterations Error Bound
16 4 5 1.22E-15
16 6 4 2.00E-15
16 8 4 8.10E-15
32 4 6 2.26E-13
32 6 6 9.88E-14
32 8 6 2.35E-13




3.2 “Matrix free” algorithm to
approximate real roots



Cayley Map and Root-Squaring

Cayley Maps
The map
_x+ v—1
Y= x—V—1
and its inverse
+ 1
x = m(y—)
y—1

send the real line onto the unit circle and vice versa.



Cayley Map and Root-Squaring
Algorithm

INPUT: two integers n and r, 0 < r < n, and the coefficients of a polynomial

p(z) where p(0) # 0 and p(1)p(v/—1) # 0.

OUTPUT: Approzimations of the real roots 1, ..., z, of the polynomial p(z).



COMPUTATIONS:

T+1

" 1) =" gzt (This Cayley map moves

. Compute q(z) = (x — 1)"p(y/—1

the real azis, in particular the real roots of p(z), into the unit circle.)

. ¢o(z) = q(z)/qn, apply the k squaring steps via gni1(z) = (—1)"qn(vVZ)qn(—/7)
forh=0,1,... k—1. then divide q.(z) by ||qr(z)|| (These steps keep the images

of the real roots of p(x) on the init circle for all k, while sending the images of

every other root of p(x) towards either the origin or the infinity.)



COMPUTATIONS:

3. For a sufficiently large integer k, the polynomial qi.(x) approximates the polyno-

mial 5uy(z) where ug(z) =Y _yu;x* and has all roots lying on the unit circle.

Obtain u(z).

r+

4. Compute the polynomial wi(z) = uk(ﬁ\/::i) (This Cayley map sends the im-
ages of the real roots of the polynomial p(z) lying on the unit circle C(0,1) back

to the real line.)



COMPUTATIONS:

5. Apply one of the algorithms of [BT90], [BP98], and [DJLZ97] to approzimate

the r real roots 21, ..., 2 of the polynomial wi(z) (cf. Theorem 3.1.4).

6. Apply the Cayley map w = (z;4+v/-1)/(z; = V-1) for j=1,...,r to extend
Stage 5 to approzimating the r roots :ng), . ,:v,(k) of the polynomials ui(z) and

yk(z) = 2*uk(z) lying on the unit circle C(0,1).



COMPUTATIONS:

7. Apply the descending process (similar to the ones of [P95] and [P02])) to ap-
prozimate the r roots :v(lh), . ,azﬁh) of the polynomials q,(x) lying on the unit

circle C(0,1) forh=k —1,...,0.

8. Approximate the r real roots x; = \/—1(:1:(0) + 1)/(:v(0) —1),5=1,...,r, of the

J J

polynomial p(z).

The overall cost of this algorithm is O(knlogn) flops.



NUMERICAL TEST FOR CAYLEY MAP
AND ROOT-SQUARING ALGORITHM

The test candidates are products of rth
Chebyshev polynomials and polynomials of
the form 1+2x+3x°.+(n—r+1Dx™" . The
number of real roots of such polynomials
equals to the degree r of the Chebyshev
polynomial. The iteration stops when

there are only r+1 nonzero coefficients
that have absolute value greater than the

tolerance bound 107° . The descending
procedure was achieved by a Proximity
Test with Newton'’s Iteration.



Additional topics



Matrix version of Cayley Map
Algorithm

H(M) = (M +v=1I)(M — /=1I)""



Let P=H(M)



Real eigen-solving by means of
factorization.

INPUT: a real n x n matriz M having r real eigenvalues and s = (n —r)/2 pairs of

nonreal complex conjugate eigenvalues, neither of them equal to /—1.

OUTPUT: approzimations to the real eigenvalues xy, ...z, of the matriz M.



COMPUTATIONS:

1. Compute the matric P = (M 4+ /=1 I)(M — /=1 I)~*. (This is the matriz
version of a Cayley map of Theorem 3.1.3. It moves the real and only the real
eigenvalues of the matriz M into the the eigenvalues of the matriz P lying on

the unit circle C'(0,1).)



COMPUTATIONS:

2. Fiz a sufficiently large integer k and compute the matriz Y = (P* — P~=%)~1 in
the following factorized form [];— (P — wiP~')~" where wy = exp(2my/—1/k).
(For any integer k the images of all real eigenvalues of the matriz M have
absolute values at least 2, whereas the images of all nonreal eigenvalues of that

matriz converge to 0 as k — 00.)



COMPUTATIONS:

Complete the computations following “Basic
Steps” starting at step 2.

The arithmetic complexity of this algorithm is
O(kn) , which makes the algorithm attractive for

real polynomial root-finding as long as it
converges for a reasonably small integer k.



BASIC POLYNOMIAL p(x)

szz _an (x — Aj).



Basic Theorem 1

Stewart 2001, Vol. 2, [Theorem 4.1.2].
For all matrix bases U € C"*" of an eigenspace U of M € C"™" we
have MU = UL for unique matrix L = U MU.



THE SECOND BASIC THEOREM. The Eigenproblems for a
Matrix and Its Function.

Let a rational function f(A) be defined on the eigenvalues of M.
Let Mv = Av. Let f(M)U =U = U ().

Then MU =U = U(A), A is the set of the eigenvalues A of M
such that f(A) = p.

A is a singleton if p is a simple eigenvalue of f(M).

— WE CAN RECOVER AN EIGENSPACE OF M FROM ITS
IMAGE IN f(M).



