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P R O B L E M S

LES REID, Editor EUGEN J. IONAŞCU, Proposals Editor

Missouri State University Columbus State University

RICHARD BELSHOFF, Missouri State University; MAHYA GHANDEHARI, University of

Delaware; EYVINDUR ARI PALSSON, Virginia Tech; GAIL RATCLIFF, East Carolina University;
ROGELIO VALDEZ, Centro de Investigación en Ciencias, UAEM, Mexico; Assistant Editors

Proposals

To be considered for publication, solutions should be received by March 1, 2022.

2126. Proposed by M. V. Channakeshava, Bengaluru, India.

A tangent line to the ellipse

x2

a2
+ y2

b2
= 1

meets the x-axis and y-axis at the points A and B, respectively.
Find the minimum value of AB.

2127. Proposed by Jeff Stuart, Pacific Lutheran University, Tacoma, WA and Roger
Horn, Tampa, FL.

Suppose that A, B ∈ Mn×n (C) such that AB = A and BA = B. Show that

(a) A and B are idempotent and have the same null space.
(b) If 1 ≤ rank A < n, then there are infinitely many choices of B that satisfy the

hypotheses.
(c) A = B if and only if A− I and B − I have the same null space.

2128. Proposed by George Stoica, Saint John, NB, Canada.

Let 0 < a < b < 1 and ε > 0 be given. Prove the existence of positive integers m and
n such that (1− bm)n < ε and (1− am)n > 1− ε.

Math. Mag. 94 (2021) 308–318. doi:10.1080/0025570X.2021.1957340 c©Mathematical Association of America

We invite readers to submit original problems appealing to students and teachers of advanced
undergraduate mathematics. Proposals must always be accompanied by a solution and any relevant
bibliographical information that will assist the editors and referees. A problem submitted as a
Quickie should have an unexpected, succinct solution. Submitted problems should not be under
consideration for publication elsewhere.

Proposals and solutions should be written in a style appropriate for this Magazine.
Authors of proposals and solutions should send their contributions using the Magazine’s sub-

missions system hosted at http://mathematicsmagazine.submittable.com. More detailed instruc-
tions are available there. We encourage submissions in PDF format, ideally accompanied by LATEX
source. General inquiries to the editors should be sent to mathmagproblems@maa.org.
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2129. Proposed by Vincent Coll and Daniel Conus, Lehigh University, Bethlehem, PA
and Lee Whitt, San Diego, CA.

Determine whether the following improper integrals are convergent or divergent.

(a)
∫ 1

0
exp

( ∞∑
k=0

x2k

)
dx

(b)
∫ 1

0
exp

( ∞∑
k=0

x3k

)
dx

2130. Proposed by Florin Stanescu, Şerban Cioiculescu School, Găeşti, Romania.

Given the acute triangle ABC, let D, E, and F be the feet of the altitudes from A, B,
and C, respectively. Choose P, R ∈ ←→AB, S, T ∈ ←→BC, Q, U ∈ ←→AC so that

D ∈ ←→PQ, E ∈ ←→RS, F ∈ ←→T U and
←→
PQ ‖ ←→EF,

←→
RS ‖ ←→DF,

←→
T U ‖ ←→DE.

Show that

PQ+ RS − T U

AB
+ RS + T U − PQ

BC
+ T U + PQ− RS

AC
= 2
√

2

if and only if the circumcenter of 
ABC lies on the incircle of 
ABC.

Quickies

1113. Proposed by Philippe Fondanaiche, Paris, France.

A generic n-gon is a convex polygon in which no three diagonals meet at a point in the
interior of the n-gon. Determine the total number of triangles lying in the interior of a
generic n-gon all of whose sides lie on the diagonals or sides of the n-gon.

1114. Proposed by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain.

Let Fk denote the kth Fibonacci number defined by initial values F0 = 0, F1 = 1 and
the recurrence relation Fk+2 = Fk+1 + Fk for k ≥ 0. Find the value of the sum

∞∑
k=2

arctan
Fk−1

FkFk+1 + 1
arctan

Fk+2

FkFk+1 − 1
.

Solutions

Invariance of a ratio of sums of cotangents October 2020

2101. Proposed by Michael Goldenberg, The Ingenuity Project, Baltimore Polytechnic
Institute, Baltimore MD and Mark Kaplan, Towson University, Towson, MD.

Recall that the Steiner inellipse of a triangle is the unique ellipse that is tangent to each
side of the triangle at the midpoints of those sides. Consider the Steiner inellipse ES of

ABC and another ellipse, EA, passing through the centroid G of
ABC and tangent
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to
←→
AB at B and to

←→
AC at C. If ES and EA meet at M and N , let ∠MAN = α. Construct

ellipses EB and EC , introduce their points of intersection with ES , and define angles β

and γ in an analogous way. Prove that

cot α + cot β + cot γ

cot A+ cot B + cot C
= 11

3
√

5
.

Solution by Albert Stadler, Herrliberg, Switzerland.
We first consider the equilateral triangle with vertices

A = (16, 0), B = (−8, 8
√

3), and C = (−8,−8
√

3),

whose centroid is the origin. In this case, ES is the circle whose equation is x2 + y2 =
82 and EA is the circle whose equation is (x + 16)2 + y2 = 162. Solving this system
of equations we find

M = (−2, 2
√

15) and N = (−2,−2
√

15).

Let ∠(
−→
u ,−→v ) denote the angle between the vectors −→u and −→v . Then

A = ∠
(
(−24, 8

√
3), (−24,−8

√
3)
)

and α = ∠
(
(−18, 2

√
15), (−18,−2

√
15)
)

.

Rotating the vectors above 120◦ and 240◦ counter-clockwise gives

B = ∠
(
(0,−16

√
3), (24,−8

√
3)
)

,

β = ∠
(
(9− 3

√
5,−9

√
3−√15), (9+ 3

√
5,−9

√
3+√15)

)
,

C = ∠
(
(24, 8

√
3), (0, 16

√
3)
)

, and

γ = ∠
(
(9+ 3

√
5, 9
√

3−√15)), (9− 3
√

5, 9
√

3+√15)
)

.

Now let 
A′B ′C ′ be any non-degenerate triangle whose centroid is at the origin.
There is an invertible linear map f (x, y) = (ax + by, cx + dy) such that 
A′B ′C ′ =
f (
ABC). This linear mapping preserves the centroid, all midpoints, all tangencies,
and it maps lines to lines and circles to ellipses. It remains to analyze how this lin-
ear mapping transforms the six numbers cot A, cot B, cot C, cot α, cot β, and cot γ to
cot A′, cot B ′, cot C ′, cot α′, cot β ′, and cot γ ′.

We will use the fact if φ = ∠((u1, u2), (v1, v2)), then

cot φ = u1v1 + u2v2

u1v2 − u2v1

by the difference formula for cotangent.
Now

A′ = ∠
(
f (−24, 8

√
3), f (−24,−8

√
3)
)

,

B ′ = ∠
(
f (0,−16

√
3), f (24,−8

√
3)
)

, and

C ′ = ∠
(
f (24, 8

√
3), f (0, 16

√
3)
)

.
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This gives

cot A′ = 3a2 − b2 + 3c2 − d2

2
√

3(ad − bc)

cot B ′ = b2 −√3ab + d2 −√3cd√
3(ad − bc)

cot C ′ = b2 +√3ab + d2 +√3cd√
3(ad − bc)

.

Therefore,

cot A′ + cot B ′ + cot C ′ =
√

3
(
a2 + b2 + c2 + d2

)
2(ad − bc)

.

A similar calculation yields

cot α′ + cot β ′ + cot γ ′ = 11
(
a2 + b2 + c2 + d2

)
2
√

15(ad − bc)
.

Finally,

cot α′ + cot β ′ + cot γ ′

cot A′ + cot B ′ + cot C ′
= 11

3
√

5

as desired.

Also solved by Elton Bojaxhiu (Germany) & Enkel Hysnelaj (Australia) and the proposers.
There were two incomplete or incorrect solutions.

Trigonometric identities for the heptagonal triangle October 2020

2102. Proposed by Donald Jay Moore, Wichita, KS.

Let α = π/7, β = 2π/7, and γ = 4π/7. Prove the following trigonometric identities.

cos2 α

cos2 β
+ cos2 β

cos2 γ
+ cos2 γ

cos2 α
= 10,

sin2 α

sin2 β
+ sin2 β

sin2 γ
+ sin2 γ

sin2 α
= 6,

tan2 α

tan2 β
+ tan2 β

tan2 γ
+ tan2 γ

tan2 α
= 83.

Solution by Eugene A. Herman, Grinnell College, Grinnell, IA.
Denote the trigonometric expressions by C,S,T , respectively. The expansion

sin(7t) = sin t
(
64 cos6 t − 80 cos4 t + 24 cos2 t − 1

)
yields the key polynomial as follows. When t = α or t = β or t = γ , then sin(7t) = 0
but sin t �= 0. Hence the cubic polynomial

p(x) = 64x3 − 80x2 + 24x − 1
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has the three zeros a = cos2 α, b = cos2 β, c = cos2 γ . Since

p(x) = 64(x − a)(x − b)(x − c),

we have values for the three elementary symmetric polynomials:

a + b + c = 5

4
, ab + bc + ca = 3

8
, abc = 1

64
.

We use the double angle formula for sine as follows:

sin2 t

sin2 2t
= sin2 t

4 sin2 t cos2 t
= 1

4 cos2 t
.

Hence, since sin2 2γ = sin2 α,

S = sin2 α

sin2 β
+ sin2 β

sin2 γ
+ sin2 γ

sin2 α
= 1

4a
+ 1

4b
+ 1

4c
= bc + ca + ab

4abc
= 3/8

4/64
= 6.

We use the double angle formula for cosine as follows:

cos2 t

cos2 2t
= cos2 t

(2 cos2 t − 1)2
.

Hence, since cos2 2γ = cos2 α,

C = cos2 α

cos2 β
+ cos2 β

cos2 γ
+ cos2 γ

cos2 α
= a

(2a − 1)2
+ b

(2b − 1)2
+ c

(2c − 1)2
.

Substituting x = (y + 1)/2 into the polynomial p(x) yields

q(y) = 8y3 + 4y2 − 4y − 1.

Since y = 2x − 1, the zeros of q(y) are a′ = 2a − 1, b′ = 2b − 1, c′ = 2c − 1 and
the elementary symmetric polynomial expressions are

a′ + b′ + c′ = −1

2
, a′b′ + b′c′ + c′a′ = −1

2
, a′b′c′ = 1

8
.

Hence,

C = a′ + 1

2a′2
+ b′ + 1

2b′2
+ c′ + 1

2c′2
= a′b′2c′2 + b′a′2c′2 + c′a′2b′2 + b′2c′2 + a′1c′2 + a′2b′2

2(a′b′c′)2

= (a′b′c′)(a′b′ + b′c′ + c′a′)+ (a′b′ + b′c′ + c′a′)2 − 2(a′b′c′)(a′ + b′ + c′)
2(a′b′c′)2

= −1/16+ 1/4+ 1/8

2/64
= 10.

For the third identity, we use both double angle formulas:

tan2 t

tan2 2t
= sin2 t cos2 2t

cos2 t sin2 2t
= (2 cos2 t − 1)2

4 cos4 t

Thus, since tan2 2γ = tan2 α,

T = tan2 α

tan2 β
+ tan2 β

tan2 γ
+ tan2 γ

tan2 α
=
(

2a − 1

2a

)2

+
(

2b − 1

2b

)2

+
(

2c − 1

2c

)2

.
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Substituting x = 1/(2(1− z)) into the polynomial p(x) and clearing fractions yields

r(z) = 8(z3 + 9z2 − z− 1).

Since z = (2x − 1)/(2x), the zeros of r(z) are

a′ = 2a − 1

2a
, b′ = 2b − 1

b
, c′ = 2c − 1

c

and the elementary symmetric polynomial expressions are

a′ + b′ + c′ = −9, a′b′ + b′c′ + c′a′ = −1, a′b′c′ = 1.

Hence,

T = a′2 + b′2 + c′2 = (a′ + b′ + c′)2 − 2(a′b′ + b′c′ + c′a′) = 92 − 2(−1) = 83.

Also solved by Michel Bataille (France), Anthony J. Bevelacqua, Brian Bradie, Robert Cal-
caterra, Hongwei Chen, John Christopher, Robert Doucette, Habib Y. Far, J. Chris Fisher, Dmitry
Fleischman, Michael Goldenberg & Mark Kaplan, Russell Gordon, Walther Janous (Austria), Kee-
Wai Lau (Hong Kong), James Magliano, Ivan Retamoso, Volkhard Schindler (Germany), Randy
Schwartz, Allen J.Schwenk, Albert Stadler (Switzerland), Seán M. Stewart (Australia), Enrique
Treviño, Michael Vowe (Switzerland), Edward White & Roberta White, Lienhard Wimmer (Ger-
many), and the proposer. There were two incomplete or incorrect solutions.

How many tickets to buy to guarantee three out of four? October 2020

2103. Proposed by Péter Kórus, University of Szeged, Szeged, Hungary.

In a soccer game there are three possible outcomes: a win for the home team (denoted
1), a draw (denoted X), or a win for the visiting team (denoted 2). If there are n games,
betting slips are printed for all 3n possible outcomes. For four games, what is the
minimum number of slips you must purchase to guarantee that at least three of the
outcomes are correct on at least one of your slips?

Solution by Northwestern University Math Problem Solving Group, Northwestern Uni-
versity, Evanston, IL.
The answer is nine.

First, we prove that it is impossible to guarantee at least three correct outcomes with
fewer than nine slips.

Let T be the set of all possible outcomes, i.e., all 4-tuples of 1, X, and 2. There are
34 = 81 such 4-tuples. In that set, we define the Hamming distance d as the number of
places in which two tuples differ. For example, d(1X21, 2X12) = 3 because 1X21 and
2X12 differ in three places, namely the first, third and fourth places. The Hamming
distance satisfies the usual axioms for a metric, and we can define balls in T in the
usual way, i.e., a ball with center c ∈ T and radius r ∈ R is

Br(c) = {t ∈ T | d(t, c) ≤ r}.
Given a tuple c ∈ T , the set of tuples that coincide with c in at least three places
consists of those that differ from c in no more than one place. In other words, this set
is B1(c). Note that B1(c) contains exactly 9 elements: the center c, the two tuples that
differ from c exactly in the first element, the two that differ in the second, the two that
differ in the third, and the two that differ in the fourth.
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In order to ensure that our slips c1, c2, . . . , cn contain at least three correct entries,
the balls B1(ci), i = 1, 2, . . . , n must cover T , i.e.,

T =
n⋃

i=1

B1(ci).

Since |B1(c)| = 9 and |T | = 81, we will need at least 81/9 = 9 slips.
Next, we will prove that nine slips suffice. That can be accomplished by exhibit-

ing nine 4-tuples c1, . . . , c9 such that Bi(c1), . . . , Bi(c9) cover T , i.e., such that every
element in T has a Hamming distance of at most 1 from at least one of the ci . The
following 4-tuples satisfy the condition:

1111 1XXX 1222 X1X2 XX21 X21X 2X12 212X 22X1

One (somewhat tedious) way to check it is to verify that each of the 81 elements in
T differ from at least one of these tuples in no more one place.

A slightly easier way to verify the assertion is to observe that these tuples differ
from each other in exactly three places, so the Hamming distance between any two
of them is 3. Because of the triangle inequality, it is impossible for balls of radius 1
centered on the ci to overlap. Therefore the total number of elements contained in the
union of these balls is 9 · 9 = 81, so the union must be all of T .

This completes the proof.

Also solved by Elton Bojaxhiu (Germany) & Enkel Hysnelaj (Australia), Eagle Problem
Solvers, Fresno State Problem Solving Group, Dan Hletko, Rob Pratt, Allen J. Schwenk, and
the proposer. There were seven incomplete or incorrect solutions.

Vector spaces as unions of proper subspaces October 2020

2104. Proposed by the Missouri State University Problem Solving Group, Missouri
State University, Springfield, MO.

It is well known that no vector space can be written as the union of two proper sub-
spaces. For which m does there exist a vector space V that can be written as a union of
m proper subspaces with this collection of subspaces being minimal in the sense that
no union of a proper subcollection is equal to V ?

Solution by Paul Budney, Sunderland, MA.
Such a decomposition exists for any m > 2.

Let V = F
n
2, where F2 is the field with two elements. Let

Vi = { (x1, . . . , xn) ∈ V | xi = 0}
for 1 ≤ i ≤ n and let

W = {(0, 0, . . . , 0), (1, 1, . . . , 1)}.
Clearly W and the Vi are proper subspaces of V . Since (1, 1, . . . , 1) is the only vector
not in V1 ∪ V2 ∪ . . . ∪ Vn,

W ∪ V1 ∪ V2 ∪ . . . ∪ Vn = V.

Deleting W from this union excludes (1, 1, . . . , 1). Deleting Vi from this union
excludes (1, . . . , 1, 0, 1, . . . , 1), with 0 for the ith component and 1’s elsewhere.
Thus, there is no proper subcollection of these subspaces whose union is V . There are
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n+ 1 subspaces, and since n ≥ 2 is arbitrary, the desired decomposition exists for any
m > 2.

Also solved by Anthony Bevelacqua, Elton Bojaxhiu (Germany) & Enkel Hysnelaj (Australia),
Robert Doucette, Eugene Herman, and the proposer. There was one incomplete or incorrect solu-
tion.

An asymptotic formula for a definite integral October 2020

2105. Proposed by Marian Tetiva, National College “Gheorghe Ro̧sca Codreanu”,
Bı̂rlad, Romania.

Let f : [0, 1]→ R be a function that is k times differentiable on [0, 1], with the kth
derivative integrable on [0, 1] and (left) continuous at 1. For integers i ≥ 1 and j ≥ 0
let

σ
(i)

j =
∑

j1+j2···+ji=j

1j12j2 · · · iji ,

where the sum is extended over all i-tuples (j1, . . . , ji) of nonnegative integers that
sum to j . Thus, for example, σ

(i)

0 = 1, and σ
(i)

1 = 1+ 2+ · · · + i = i(i + 1)/2 for all
i ≥ 1. Also, for 0 ≤ j ≤ k let

aj = σ
(1)

j f (1)+ σ
(2)

j−1f
′(1)+ · · · + σ

(j)

1 f (j−1)(1)+ σ
(j+1)

0 f (j)(1).

Prove that ∫ 1

0
xnf (x)dx = a0

n
− a1

n2
+ · · · + (−1)k ak

nk+1
+ o

(
1

nk+1

)
,

for n→∞. As usual, we denote by f (s) the sth derivative of f (with f (0) = f ), and
by o(xn) a sequence (yn) with the property that limn→∞ yn/xn = 0.

Solution by Michel Bataille, Rouen, France.
For x ∈ [0, 1], let f0(x) = f (x) and

fj (x) = d

dx

(
xfj−1(x)

)
, 1 ≤ j ≤ k.

An easy induction shows that for 0 ≤ j ≤ k, the function fj is a linear combination of
the functions f (x), xf ′(x), . . . , xjf (j)(x). It follows that f0, f1, . . . , fk−1 are differ-
entiable on [0, 1] and that fk is integrable on [0, 1] and continuous at 1.

Integrating by parts, we obtain the following recursion that holds for 1 ≤ j ≤ k − 1:∫ 1

0
xnfj−1(x) dx =

[
xn

n
· (xfj−1(x))

]1

0

− 1

n

∫ 1

0
xnfj (x) dx

= fj−1(1)

n
− 1

n

∫ 1

0
xnfj (x) dx.

With the help of this recursion, we are readily led to∫ 1

0
xnf (x) dx =

∫ 1

0
xnf0(x) dx
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=
k−1∑
j=0

(−1)j fj (1)

nj+1
+ (−1)k

nk

∫ 1

0
xnfk(x) dx.

Now, if g : [0, 1]→ R is integrable on [0, 1] and continuous at 1, then

lim
n→∞ n ·

∫ 1

0
xng(x) dx = g(1)

(Paulo Ney de Souza, Jorge-Nuno Silva, Berkeley Problems in Mathematics, Springer,
2004, Problem 1.2.13). With g = fk, this yields∫ 1

0
xnfk(x) dx = fk(1)

n
+ o

(
1

n

)

and therefore∫ 1

0
xnf (x) dx =

k−1∑
j=0

(−1)j fj (1)

nj+1
+ (−1)k

nk

(
fk(1)

n
+ o

(
1

n

))

=
k∑

j=0

(−1)j fj (1)

nj+1
+ o

(
1

nk+1

)
.

Comparing this with the statement of the problem, it remains to prove that aj = fj (1)

for 0 ≤ j ≤ k. Clearly, it is sufficient to prove that for x ∈ [0, 1]

fj (x) =
j∑

i=0

σ
(i+1)

j−i xif (i)(x). (Ej )

We use induction. Since f0(x) = f (x) = 1 · x0f (0)(x), (E0) holds. Before addressing
the induction step, we establish two results about the numbers σ

(i)

j . The first result is

σ
(i+1)

j =
j∑

r=0

(1+ i)rσ
(i)

j−r . (1)

Proof. When j1 + · · · + ji + ji+1 = j , then ji+1 can take the values 0, 1, . . . , j . It
follows that

σ
(i+1)

j =
∑

j1+···+ji+1=j

1j12j2 · · · iji (i + 1)ji+1

=
j∑

r=0

(1+ i)r
∑

j1+···+ji=j−r

1j12j2 · · · iji

=
j∑

r=0

(1+ i)rσ
(i)

j−r .

The second result is

σ
(i+1)

j+1 = σ
(i)

j+1 + (1+ i)σ
(i+1)

j . (2)



VOL. 94, NO. 4, OCTOBER 2021 317

Proof. Applying (1),

σ
(i+1)

j+1 =
j+1∑
r=0

(1+ i)rσ
(i)

j+1−r

= σ
(i)

j+1 + (1+ i)

j+1∑
r=1

(1+ i)r−1σ
(i)

j−(r−1)

= σ
(i)

j+1 + (1+ i)

j∑
r=0

(1+ i)rσ
(i)

j−r

and applying (1) again we conclude that σ
(i+1)

j+1 = σ
(i)

j+1 + (1+ i)σ
(i+1)

j .
Now, assume that (Ej ) holds for some integer j such that 0 ≤ j ≤ k − 1. Then, we

calculate

fj+1(x) = d

dx

[
j∑

i=0

σ
(i+1)

j−i xi+1f (i)(x)

]

=
j∑

i=0

σ
(i+1)

j−i (i + 1)xif (i)(x)+
j∑

i=0

σ
(i+1)

j−i xi+1f (i+1)(x)

=
j∑

i=0

σ
(i+1)

j−i (i + 1)xif (i)(x)+
j+1∑
i=1

σ
(i)

j−i+1x
if (i)(x)

= σ
(1)

j f (x)+
j∑

i=1

(
[σ (i)

j−i+1 + (i + 1)σ
(i+1)

j−i ]xif (i)(x)
)
+ σ

(j+1)

0 xj+1f (j+1)(x).

Using (2) and σ
(1)

j = σ
(1)

j+1 = 1 = σ
(j+1)

0 = σ
(j+2)

0 , we see that

fj+1(x) =
j+1∑
i=0

σ
(i+1)

j+1−ix
if (i)(x)

so that (Ej+1) holds. This completes the induction step and the proof.
Note. The number σ

(i)

j is the Stirling number of the second kind S(i + j, i) = {i+j

i

}
(see L. Comtet, Advanced Combinatorics, Reidel, 1974, Theorem D p. 207).

Also solved by Albert Stadler (Switzerland) and the proposer.

Answers

Solutions to the Quickies from page 309.

A1113. Consider the union of the endpoints of the sides or diagonals of the polygon
that contain the sides of the interior triangle. There can be 3,4,5, or 6 such points.
Order those points in a clockwise direction around the polygon: P1, P2, . . ..

• With three points, the sides of the triangle must be {P1P2, P1P3, P2P3}. There are(
n

3

)
of these triangles.
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• With four points, there are four possibilities for the sides of the triangle:
{{PiPi+2, Pi+2Pi+1, Pi+1Pi+3}}, where the subscripts are taken modulo 4. There are
4
(
n

4

)
of these triangles.

• With five points, there are five possibilities for the sides of the triangle:
{{PiPi+2, Pi+2Pi+4, Pi+1Pi+3}}, where the subscripts are taken modulo 5. There are
5
(
n

5

)
of these triangles.

• With six points, the sides of the triangle must be {P1P4, P2P5, P3P6}. There are
(
n

6

)
of these triangles.

Therefore, the total number of triangles is(
n

3

)
+ 4

(
n

4

)
+ 5

(
n

5

)
+
(

n

6

)
.

A1114. Let

Sn =
n∑

k=2

arctan
Fk−1

FkFk+1 + 1
arctan

Fk+2

FkFk+1 − 1
.

By the recurrence relation for the Fibonacci numbers, we have

Sn =
n∑

k=2

arctan
Fk+1 − Fk

FkFk+1 + 1
arctan

Fk + Fk+1

FkFk+1 − 1
.

Since,

arctan
y − x

xy + 1
= arctan

1

x
− arctan

1

y
and arctan

y + x

xy − 1
= arctan

1

x
+ arctan

1

y

for xy > 1, our sum becomes

Sn =
n∑

k=2

(
arctan

1

Fk

− arctan
1

Fk+1

)(
arctan

1

Fk

+ arctan
1

Fk+1

)

=
n∑

k=2

(
arctan

1

Fk

)2

−
(

arctan
1

Fk+1

)2

=
(

arctan
1

F2

)2

−
(

arctan
1

Fn+1

)2

,

since the last sum telescopes. Hence, the sum of the series is

lim
n→∞ Sn = lim

n→∞

((
arctan

1

F2

)2

−
(

arctan
1

Fn+1

)2
)

=
(

arctan
1

F2

)2

= π2

16
.


